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ABSTRACT 

The points homoclinic to 0 under a hyperbolic toral au tomorphism form 

the intersection of the stable and unstable manifolds of 0. This is a 

subgroup isomorphic to the fundamental  group of the torus. Suppose tha t  

two hyperbolic toral automorphisms commute so that  they determine a 

Z2-action, which we assume is irreducible. We show, by an algebraic 

investigation of their eigenspaces, that  they either have exactly the same 

homoclinic points or have no homoclinic point in common except 0 itself. 

We prove the corresponding result for a compact connected abelian group, 

and compare the two proofs. 
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1. I n t r o d u c t i o n  

Let n > 2, and let A E GL(n,  Z) be a linear ergodic au tomorphism of the n- torus  

X = 11 ~ = ]R~/Z n. A point x E X is h o m o c l i n i c  for A iflimlnl_.oo 5(Anx, 0) = 0, 

where 5 is the usual Euclidean metric on X. If the au tomorphism A is nonhy-  

perbolic then A has no nonzero homoclinic points (cf. e.g. [4]). If A is hyperbolic  

we can describe the set AA C X of homoclinic points of A as follows: let A act  

linearly on ]R n and denote by SA and UA the stable (=  contracting) and unstable 

(=  expanding) subspaces of A, i.e. 

S A = { W E R n :  lim A'~w=O}, 
n - ~ O O  

UA= {WEI~n: lim A-nw=O} ,  

R n • SA ~]~UA. 

If  7r: R ~ ~ > T n is the quotient map,  then 

AA = {1r(SA M (UA + m)):  m E Zn}, 

and it is well-known and easy to see tha t  AA is a dense subgroup of X.  

Now suppose tha t  A, B are two commut ing  linear hyperbolic au tomorphisms  

of X = lI ~ .  We write 

(1.1) a:  n = (n l ,n2)  ~-~ a n = Arab '~2 

for the Z2-action generated by A and B and conclude from Theorem 4.1 in [4] 

tha t  a has no nonzero homoclinic point, i.e. tha t  x = 0 is the only point  in X 

with 

lim anx = O. 
n---~ Oo  

It  may  happen,  however, tha t  there exist nonzero points x E X which are ho- 

moclinic bo th  for A and B. In fact, if the action a in (1.1) is i r r e d u c i b l e  in 

the sense tha t  X has no proper  subtorus which is invariant under  bo th  A and 

B,  then we shall see tha t  either A A N A B  = {0} or AA ---- A s ;  more generally, if 

m,  n E Z 2 are chosen so tha t  a m and a n are hyperbolic,  then either Aam = A s ,  

or A~m M A~n = {0}, and both  possibilities occur for suitable choices of in  and 

n. If  the Z2-action a is not  irreducible then we can obviously not expect  such a 

clear-cut dichotomy. 

In order to make the above s ta tements  more precise we fix commut ing  linear 

hyperbol ic  au tomorphisms A, B E GL(n,  Z) of ~ and assume tha t  the 7/~ 2-actiOn 

a generated by A, B via (1.1) is irreducible. Then  it is easy to see tha t  A and B 

are s imultaneously diagonalisable over the algebraic closure Q of the field Q of 
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rational numbers; in particular there exists a basis Wl, • . . ,  w~ of ~ n  consisting 

of common eigenvectors of A and B (of. Lemma 2.1). For every k = 1 , . . . , n  

we define a homomorphism r/k from Z 2 into the multiplicative group of positive 

real numbers by setting r/k(n) = I an(wk)l /I wkl for every n E Z 2, where I " [ 

denotes the Euclidean norm on C n (in other words, vk(n) is the absolute value 

of the eigenvalue of a "  for the eigenveetor wk). For k = 1 , . . . ,  n we set 

H~ = {m E Z2: l~k(m)l = i} 

and observe that  H~ is the intersection of Z 2 with a hyperplane (cf. Remark 3.3) 

Hk C R 2 and that  

(1.2) E~ = Z 2 \ 0 H~ = { m  E Z2: a m is hyperbolic) 
k=l  

is therefore nonempty. We shall prove the following result. 

THEOREM i. 1: Let A, B be commuting linear hyperbolic automorphisms of a 

finite-dimensional torus X = 'F ~, and let a be the Z2-action generated by A, B 

(cf. (1.1)). For every m = (ml ,m2)  E E~ (el. 1.2) we denote by Aam the group 

of homoclinic points of a m. I f  m,  n C Ea,  then 

Ac~m N Aa-  = / A~m 

( {0) 

if  either m, n or m, - n  are not separated 
by any of the hyperplanes IIk, k = 1 , . . . ,  m, 
otherwise. 

Theorem 1.1 is a special case of a more general result for whose s tatement  

we need a few definitions. Let a: n ~-~ a "  be a Z2-action by continuous auto- 

morphisms of an infinite compact,  connected, abelian group X. The action a is 

called e r g o d i c  if it is so with respect to the normalised Haar  measure Ax of X,  

e x p a n s i v e  if there exists an open neighbourhood N(0) of the identity element 

0 E X with n , c z ~  a~(N(0) )  = {0}, and i r r e d u c i b l e  or a l m o s t  m i n i m a l  if 

every closed, a-invariant subgroup Y C X is finite. Every expansive Z2-action 

by automorphisms of X is ergodic by Corollary 3.10 in [6]. 

THEOREM 1.2: Let a be an expansive, ergodie and irreducible Z2-action by 

automorphisms of a compact, connected, abelian group X .  Put  

Ea --- {m E Z2: a m is expansive). 

Then the following is true. 
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(1) There exist finitely many hyperplanes H I , . . . ,  Hm in 1~2 D Z 2 such that 

E~ = Z 2 \ 0 Hk = {m E Z2: a m is expansive}. 
k = l  

(2) For every m E Z 2, the group of homoclinic points A~m of a m is dense in 

X if  and only i f m  E E~, and A~m = {0} otherwise. 

(3) I f  m, n E E~ then 

{ Aam if either m, n or m, - n  are not separated 
A~m N A ~  -- by any of the hyperplanes Hk, k = 1 , . . . ,  m, 

{0} otherwise. 

If we call two elements m,  n E E~ equ iva l en t  when they are not separated by 

any of the hyperplanes Hk, then this relation partitions the set E~ into finitely 

many cones, each one of which is called a W e y l  c h a m b e r  of a in [2]-[3] (cf. 

also [1]). In this terminology Theorems 1.1-1.2 say that  a m and a n share their 

homoclinic points if and only if m,  n or m,  - n  lie in the same Weyl chamber of 

E~; if not, then they have no nonzero common homoclinic point. 

Although Theorem 1.1 is a consequence of Theorem 1.2 we shall prove it 

separately in Section 2 with a direct argument. The proof of Theorem 1.2 uses a 

little more algebraic machinery and will occupy Section 3. 

2. T h e  p r o o f  o f  T h e o r e m  1.1 

Let A, B E GL(n, Z) be commuting linear hyperbolic autornorphisms of X = 

such that  the resulting Z2-action on X is irreducible. We denote by K C C the 

smallest subfield containing all eigenvalues of A and B. 

LEMMA 2.1: The matrices A and B are simultaneously diagonalisable over K, 

i.e. there exists a basis w i , . . . ,  w~ of K ~ consisting of common eigenvectors of A 

and B (considered as acting linearly on K'~). 

Proof: The assertion of the lemma is equivalent to the corresponding s ta tement  

for the transposes A T and B T of A and B. The matrix A T has an eigenvector 

in K n with eigenvalue a0, say, and the subspace W = {w E K~: Aw -= aow} is 

invariant under B T. Since B T has an eigenvector in W there exists a c o m m o n  

eigenvector w E K ~ of A T and B T with eigenvalues a0, b0 E K under A T and 

B T, respectively. 

We write F for the Galois group of the extension K: Q and let F act diagonally 

on ]K "~ for every m > 1. For every "y E F, ~,(w) is a common eigenvector of 
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A n- and B T with eigenvalues (a, b) = (7(ao), ~'(b0)). Put, for every (a, b) • E = 

F(a0, bo) C K 2, 

V(a,b ) = {w • K~: A Tw = aw, B T w  = bw} ~ {0} (2.1) 

and set 

(2.2) V =  0 V(a,b). 
(a,b)eE 

Then {0} ¢ V C K ~, and the lemma is proved if we can show that 

(2.3) V = K n. 

Suppose that  V ¢ K '~. We denote by R2 = Z[ul, u2] the ring of polynomials 

with integral coefficients in the variables Ul, u2, write p = { f  • R2: f (a,  b) = 0} 

for the ideal in R~ consisting of all polynomials vanishing at (a, b), and set 

p(A T , B  T) = { / (A T , B T ) : I • p } .  

Hilbert's Nullstellensatz implies that 

Vp = {(cl,c2) • C2: f (cl ,c2) = 0 for every I • P} = E 

and hence that  

{0} -¢ V = {w • Kn: Cw = 0 for every C • p(A T, BT)} ¢ N ~. 

Hence 

{0} ¢ { w • Q n  C w - - 0  for e v e r y C • p ( A T , B T ) }  =fiQn, 

and the annihilator of 

M = {w • Zn: Cw = 0 for every C • p(AT,BT)} 

in X = Z ~ is a proper subtorus of X which is invariant under A and B, contrary 

to our assumption of irreducibility. 

This contradiction proves both (2.3) and the lemma. I 

LEMMA 2.2: If  an element 0 ¢ n • Z '~ is expressed as 

n -- E W(a'b) 
(a,b)eE 
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with w(~,b) • V(~,b) for every (a, b) C E (c£ (2.1)-(2.3)), then W(~,b) ~ 0 for every 

(~,b) e E. 

Proo~ Suppose t h a t  E(a,b)EE W(a,b) : n • Z n with W(a',b') ~ 0 and w(a,,,b,,) 

=- 0 for two eigenvalue pairs (a', b'), (a", b") C E. We choose an element ~, • F 

with 7(a ' )  = a", ~/(b') = b" and obtain that  

(a,b)EE 

has a nonzero component in  V(a,,,b,,), which is absurd, I 

This argument is a special case of that  in [5]. 

LEMMA 2.3: For every homoclinic point  x • /k A C "]In there exists a point  

y C (R M K) n with ~r(y) = x, where 7r: R n ~ ~ ~n is the quotient map. 

Proof: Let a l , . . . ,  ar and a t + l , . . . ,  a~ be the expanding and contracting eigen- 

A vahms of A, counted with multiplicity, and put As = l-I~_-l( - ai I ) ,  A~ = 

I]i~=r+l(A-aiI) ,  where I is the n × n  identity matrix. Then AsSA = A~UA = {0}. 

Every x E AA is of the form x = ~(w) with {w} = S A M  (UA + m) for some 

m C Z ~. If we write a l , . . . a n  • (]~V]K) n and b l , - - - , { J n  • (]~ N K) n for the row 

vectors of As and A~, respectively, then w is the unique solution in ll~ '~ of the 

inhomogeneous system of linear equations 

(2.4) (al, w) = 0 , . . . ,  (aN, w) = 0, 

(b l ,  W - m )  = 0 , . . . ,  (bn, w - m )  = O, 

where (:, .) denotes the Euclidean inner product in ~ .  As the coefficients of the 

system (2.4) all lie in K, we conclude that  the system (2.4) also has a unique 

solution in K ~, i.e. that  w E (1~ n K) n. I 

Proo f  o f  Theorem 1.1: We let A , B  act linearly on ~ and write IR n --- SA ~ U A  

-- SB @ UB for the splittings of R~ into the stable (= contracting) and unstable 

(-- expanding) subspaces of A and B. If SA = SB and UA = UB then it is clear 

that  A A = AB. If SA = UB and UA = SB we can invert B and again arrive at 

the conclusion that  A A ---- AB. 

In any other case (after replacing B by B -1 and interchanging A and B, if 

necessary) we have 

(2.5) {O} # UA nU.  # UA, VA + Vs # ~t ~. 
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If a point x • T ~ is homoclinic for both A and B then there exist elements 

p , q , r • Z  n a n d w • R  n such that 

(2.6) {w} = SA O (UA -- p) = (SB -- q) O (UB -- r). 

By Lemma 2.3, w • (R N K) ~, so that we may replace the subspaces SA,SB ,  

UA, UB in (2.5) (2.6) by the subspaces 

G G 
{(~,b)eE: I~l<l} {(~,b)eE: I~1>1} 

O uS= 
{(a,b)cE: ]b]<l} {(a,b)EE: Ibl>l} 

Y(a,b), 

V(.,b). 

Then (2.6) shows that q E S~ + S~ and p - r E U~ + U~. However, according 

to (2.5) there exist elements (a, b), (a', b'), (a", b") G E with V(~,b) C U' A N Us,  

V(a,,b,) A U' A = V(a',b') n U~ = {0}, V(a",b") N U~ = {0}, V(a",b") C U' A and 

hence with V(a,b) N (S~ + S~) = {0} and V(a,,b,) N (U~ + U~) -- {O}, so that  

q = p - r = 0 b y L e m m a 2 . 2 .  T h e n w • S ~ 4 N S ~ , w + p C U ~ N V ~ , a n d h e n c e  

p • (S~ N S~) + (U~ N U~). Since V(~,,,b,,) N ((S~4 N S~) + (U~ N U~)) = {O}, 

this is an expression of p as a sum of common eigenvectors of A, B with zero 

component in V(a",b"). Lemma 2.2 yields that p = 0, so that w • S'ANU' A = {0}. 

I 

3. T h e  p r o o f  o f  T h e o r e m  1.2 

Let Q× = Q "-. {0}, c = (cl,c2) • (~×)2, and let 1K = Q(c) be the algebraic 

number field generated by cl, c2. We write pK, pK and P ~  for the sets of places 

(= equivalence classes of valuations), finite places and infinite places of K, choose 

for each v • pK a valuation I" [. in v, and denote by K~ the completion of K 

with respect to the valuation [. [v. 

Proceeding as in Section 7 in [7] we set 

P(c) = P ~  U {v • P~: le~lv # 1 for some i = l, 2} 

and put 

(3.1) 

where ip(c): R~ , 

av 

Rc -- {a ~ K: lair _< 1 for every v ¢ P~< \ P(c)}, 

Z c =  Y I  K~, Y c =  Zc/ip(c)(Rc),  
vEP(c) 

) Zc is the diagonal embedding a ~-~ (av, v • P(c))  • Z~ with 

-- a for every v • P(c).  Then ip(c)(Rc) is a discrete and co-compact subgroup 
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of the locally compact abelian group Z~ and Y~ is (isomorphic to) the Pontryagin 

dual Rc of R~. 

We define a Z2-action & on R~ by setting 

&n(a) _-- cna 

for every a E R~ and n ~- (nl ,n2) E Z 2, where c ~ = c1~c2~2. The Z2-action a~ on 

Yc TM R~ dual to & is given by 

(3.2) a~((av, v E P(c)) + ip(c)(R~)) = (c~a~, v E P(c)) + ip(~)(Rc) 

for every n E Z 2 and (a, ,  v E P(c)) + ip(c)(Rc) E Y~. As an application of 

Theorem 29.2 and Corollary 7.4 in [7] we obtain the following lemma. 

LEMMA 3.1: Let/3 be an irreducible Z 2-action by automorphisms of  a compact, 

connected, abelian group X .  Then there exist a point c = ( c1 , c2 )  E (Qx) 2 

and continuous, surjective, finite-to-one group homomorphisms ¢: Yc ~ ) X ,  

¢: X ~ ) Yc such that ¢ " a c = . ¢ and ~b . = a~ t for every n E Z 2. 

Proo f  The only assertion which goes beyond the statements of Theorem 29.2 

and Corollary 7.4 in [7] is the existence of the homomorphism ¢: X ~ ~ Yc with 

the required properties. The homomorphism ¢: Y~ ~ X allows us to regard 

as a/~-invaxiant subgroup of finite index in R~. Choose an integer L ~ 1 with 

LRc c X C Re, denote by ~: X ~ ~ Yc the surjective homomorphism dual to 

the inclusion Rc ~ LR~ C )~, and note that ¢ is finite-to-one. I 

LEMMA 3.2: Let/3 be an irreducible Z2-action by automorphisms of  a compact, 

connected, abelian group X ,  and let ac be the Z2-action defined in Lemma 3.1. 

The following conditions are equivalent. 

(1) /3 is expansive; 

(2) ac is expansive; 

(3) the orbit of c under the diagonal action on K 2 of the Galois group F of  

K: Q does not contain any point c ' =  (c~,c~) with Ic~I = Ic~] = 1. 

Proo f  This is Proposition 7.2 (5) in [7]. I 

Proof  of  Theorem 1.2: Let /3 be an expansive and irreducible Z2-action on a 

compact, connected abelian group X. Since the homomorphisms ¢, ¢ in Lemma 

3.1 axe finite-to-one, they are injective on the groups Aa~ and A~n of homoclinic 

points for every n E Z 2 for which/3n or, equivalently, a~ n, is expansive. It follows 
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t ha t  T h e o r e m  1.2 holds for an expansive  X2-ac t ion / ]  if and  only if it  holds for 

a co r respond ing  ac t ion  ac.  This  observat ion  allows us to assume wi thou t  loss of 

genera l i ty  t ha t  the  Z2-act ion a in the  s t a t emen t  of the  theorem is of the  form 

a --  ac  for some c -- (Cl, ,c2) E ( ~ x )  2. 

Equa t ion  (3.2) shows t ha t  an au tomorph i sm  a n = a~ n is expansive  on X = Y~ 

if and  only  if [cn iv # 1 for every v E P(c). We wri te  ~: Z~ ~ ) Y~ for the  quot ien t  

m a p  and deno te  by 

Sn = {(av, v E P(c)) E Z~: a, = 0 for every v E P(c) with [cn[~ > 1}, 

Un = { (a , ,  v E P(c)) E Z~: a ,  = 0 for every v E P(c) with  [c"[,  < 1} 

the  s tab le  and  uns tab le  subspaces  of a n in Zc. An e lement  x E X lies in A~n 

if and  only if it  is of the  form x = 77(w ) for some w E Sn n (Un + a) for some 

a E ip(c)(Rc). 
We comple te  the  proof  in the  same way as tha t  of Theorem 1.1. For every 

v E P(c), the  m a p  n ~-+ [cn]v is a homomorph i sm from Z 2 into the  mul t ip l ica t ive  

group of posi t ive  real  numbers ,  and  we set H~ = {n E Z2: [cn[~ = 1}. If ac  is 

expansive,  L e m m a  3.2 shows t ha t  each of these homomorph i sms  is nontr iv ia l ,  so 

t ha t  H i is the  in tersec t ion  wi th  Z 2 of a hyperp lane  Hv C R 2. I t  follows t ha t  the  

set 

E = Z 2 \  U H ~ - - - - - { n E Z 2 : a ~ n i s e x p a n s i v e }  

vEP(c) 

is nonempty .  

If  m ,  n E Z 2 sa t is fy  t ha t  e i ther  m and n or m and - n  lie on the  same side 

of Hv for every v E P(c ) ,  then  the  homocl inic  poin ts  of a m and  a n coincide.  

If  m and  n do not  sat isfy this  condi t ion  then  we can in terchange m and  n and  

replace  n by - n ,  if necessary,  and  assume tha t  S m -~- Sn ~ Zc, Sm -~- Un ~ Zc 

and U m +  U~ % Z~. If  a po in t  x EYc  is homocl inic  for bo th  a m and a n then  

there  exist  e lements  w E Z~ and a, b,  c E ip(~) (R~) wi th  ~(w) = x and  

{w} = S m  n (Urn - a )  = ( S n  - b )  n (Vn - c )  

and,  exac t ly  as in the  proof  of Theorem 1.1, we ob ta in  tha t  a = b = c : w = 0. 

I 

Remark 3.3: T h e  group  Yc in (3.1) is a f in i te-dimensional  solenoid;  in fact ,  Yc 

is a f in i te -d imens ional  torus  if and  only if each ci is an a lgebra ic  uni t  (cL [6] 

and  [7]). In  the  l a t t e r  case Theorem 1.2 reduces to  T he o re m 1.1, and  it may  be  

useful to  compa re  the  two proofs in this  case. Since each ci is an a lgebra ic  uni t ,  
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P(c) = P~  and Rc is the ring of algebraic integers in K -- Q(c). Rewri t ing the 

covering space IRn in the proof  of Theorem 1.1 as Zc = l-Lee(c) I ~  amounts  to a 

change of basis. In this new basis L e m m a  2.3 is obvious, since every homoclinic 

point  x E Y~ is the image under ~] of a point  w = (a~, v E P~(c)) E Z~ with 

a if ]cnl~ < 1, 
a ,  = 0 otherwise, 

for some a E R~. L e m m a  2.2 is equally obvious, since every element of iP(c) (R~) 

has a nonzero componen t  in each Y~, v E P(c). 

The  proof  of Theorem 1.2 in this section yields an explicit descript ion of the 

wa l l s / Iv ,  v E P(c), of the Weyl chambers  of the Z2-action a:  they are the kernels 
tl t2 ]I~2 of the h o m o m o r p h i s m  ( t l , t2)  ~ IclI.  ]c2], f rom to the mult ipl icat ive group 

of posit ive real numbers ,  corresponding to the places v E P(c). We il lustrate this 

with some examples .  

Examples 3.4: (1) Let A, B be commut ing  expansive au tomorph i sms  of the  n- 

torus  T ~ for which the Z2-action a in (1.1) is irreducible. By compar ing  the  proofs 

of the Theo rems  1.1 and 1.2 we see tha t  a is a finite-to-one factor of a Z2-action 

ac  for some c = (cl, c2), where Cl and c2 are eigenvalues of A and B, respectively. 

We set K = Q(c), write E for the orbit  of c under  the diagonal  act ion of the  

Galois group, and note tha t  each (a, b) E E corresponds to a place v E p K  with  
ml ~n2 [Cl c2 Iv = [am~bm2[ for every m = ( m l , m 2 )  E Z 2. The  hyperplanes  Hv,  v E 

P(c) = P~(c) are the kernels of the homomorph i sms  (tl ,  t2) ~ [hi t' Ibl t2 f rom ]R 2 

to the mult ipl icat ive group of positive real numbers ,  with (a, b) E E.  Since these 

hyperplanes  are lines with irrat ional  slopes their intersection with Z 2 is equal to 

{0}, so tha t  a n is expansive whenever 0 ~ n E Z 2. The  au tomorph i sms  a m, a n 

corresponding to two elements m ,  n E Z 2 have the same homoclinic points  if and 

only if one of the  line segments  t m +  (1 - t )n,  0 < t < 1, does not  intersect any 

Hv, v E P(c). 

(2) Let  c = (2, 3). Then  K = Q, P(c) = {c~, 2, 3} (where we are identifying the  

finite places of Q with the rat ional  primes),  Zc = R × Q2 × Q3 (where Qp denotes  

the p-adic  integers), R~ = Z[-~], and Y~ = Z~/ip(c)(Rc) is the 6-adic solenoid. 

The  hyperp lanes  Hv, v E P(c) ,  are given by 

Uo~ -- ( ( t l , t 2 )  E R2:2t13 t2 = 1}, 

H2 = ( ( t l , t 2 )  E R2: tl  = 0}, 

Ha = {( t l , t2)  E R2: t2  = 0}, 
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and the set of expansive elements of the action ac is given by 

E = {n = (nl,n2) ~ z2 :n ln2  ¢ 0}. 

In particular,  any two elements m,  n in the strictly positive quadrant  of Z 2 lead 
to au tomorphisms  a m, a n with the same homoclinic points, whereas the only 
homoclinic point common  to a (1'1) and a (1'-I) is 0. 
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